### XXXI SIMPOZIJUM DZZSCG, BEOGRAD 2021.



# **POREĐENJE FUNKCIJA ODGOVORA CR-39 DETEKTORA ZA** DETEKCIJU ALFA ZRAČENJA

Jelena M. STAJIĆ<sup>1</sup>, Biljana MILENKOVIĆ<sup>1</sup>, Nenad STEVANOVIĆ<sup>2</sup>, Vladimir M. MARKOVIĆ<sup>2</sup>, Dragoslav NIKEZIĆ<sup>2,3</sup>

1) Univerzitet u Kragujevcu, Institut za Informacione Tehnologije, Kragujevac, Srbija 2) Univerzitet u Kragujevcu, Prirodno-matematički fakultet, Kragujevac, Srbija 3) Državni univerzitet u Novom Pazaru, Novi Pazar, Srbija stajicjelena11052012@gmail.com



## Sadržaj

U radu je prikazano poređenje V funkcija koje se u literaturi najčešće koriste pri analizi detekcije alfa zračenja pomoću CR-39 detektora. Ranije razvijen program TRACK.VISION2.1, koji omogućava vizuelizaciju tragova u čvrstim trag detektorima, upotrebljen je za procenu kritičnog ugla detekcije alfa čestica. Varirani su uglovi i upadne energije čestica i predviđana je mogućnost njihove detekcije, na osnovu postavljenog kriterijuma vidljivosti. Rezultati su prikazani za pet odabranih V funkcija i diskutovano je njihovo međusobno slaganje. Dati su parametri fitovanja funkcije kritičnog ugla u zavisnosti od upadne energije za nedavno publikovanu V funkciju. Nova funkcija je ugrađena i u program za proračun kalibracionog koeficijenta CR-39 detektora u radonskoj difuzionoj komori. Izdvojene su V funkcije koje daju najbolje i najlošije slaganje rezultata teorijskih proračuna sa eksperimentalnim zapažanjima. Nova funkcija predviđa niže vrednosti kalibracionog koeficijenta u poređenju sa rezultatima dobijenim na osnovu eksperimentalnog ozračivanja CR-39 detektora u radonskoj difuzionoj komori, pri poznatoj koncentraciji radona.

#### Uvod

Čvrsti trag detektori (eng. Solid State Nuclear Track Detectors - SSNTD) nalaze široku primenu u različitim oblastima nauke i tehnologije, a prvenstveno u oblasti monitoringa i zaštite od zračenja. Jedan od najvažnijih parametara u teorijskom modelovanju mehanizma formiranja tragova u čvrstim trag detektorima je V funkcija [1] koja je u literaturi poznata i još kao funkcija osetljivosti ili funkcija odgovora detektora. Ova funkcija predstavlja odnos brzine nagrizanja detektora duž traga (Vt) i brzine nagrizanja neoštećene površine detektora (Vb), a uslov za formiranje vidljivih tragova je da je njena vrednost veća od 1. Brzine Vb i Vt zavise od uslova nagrizanja tj. od temperature, koncentracije i vrste rastvora, a brzina Vt zavisi još i od mase, naelektrisanja i energije čestice koja je napravila oštećenja duž svoje putanje u materijalu detektora.

U radu je prikazano poređenje nekoliko V funkcija koje su dostupne u literaturi, a koje se najčešće koriste pri teorijskoj analizi razvoja tragova alfa čestica u CR-39 detektorima. Odabrano je pet V funkcija koje su primenjene za teorijsku procenu kritičnog ugla detekcije i kalibracionog koeficijenta detektora postavljenog na dnu radonske difuzione komore, a rezultati su upoređeni sa eksperimentalno dobijenim vrednostima.

# 2 Metod

Funkcije kritičnih uglova detekcije alfa čestica CR-39 detektorima su dobijene korišćenjem programa TRACK VISION2.1 [2]. Upadni uglovi alfa čestica su varirani sa korakom od 1°, dok su energije varirane u intervalu od 0.5 do 8 MeV, sa korakom od 0.5 MeV. Tragovi čiji su dijametri i dubine veći od 1 µm smatrani su vidljivim. Teorijska procena kalibracionog koeficijenta je izvršena korišćenjem programa CR39\_Sensitivity napisanog u Fortran90 programskom jeziku [3]. Programi nude mogućnost odabira jedne od pet V funkcija izraženih preko rezidualnog dometa R' (u µm):

| $V_1 = 1 + (11.45e^{-0.339 \cdot R'} + 4e^{-0.044 \cdot R'})(1 - e^{-0.58 \cdot R'})$      | [4] |
|--------------------------------------------------------------------------------------------|-----|
| $V_2 = 1 + e^{-0.1 \cdot R' + 1} - e^{-1 \cdot R' + 1.27} + e^{1.27} - e^1$                | [5] |
| $V_3 = 1 + e^{-0.06082 \cdot R' + 1.119} - e^{-0.8055 \cdot R' + 1.119}$                   | [6] |
| $V_4 = 1 + e^{-0.098 \cdot R' + 1.86 - 37.78/R' + 36.98/R'^{0.98}}$                        | [7] |
| $V_5 = 1 + \frac{390}{(R'+2)^{2.35}} \ln(R'+1) \left(1 - e^{-R'/5}\right) + \frac{R'}{80}$ | [8] |

Eksperimentalno određivanje kalibracionog koeficijenta: konusna radonska difuziona komora sa CR-39 detektorom je izložena radonu srednje koncentracije od oko 3400 Bq m-3 (koncentracija je merena urađajem RAD7); detektor je podvrgnut hemijskom nagrizanju u rastvoru NaOH koncentracije 6.25 N, na temperaturi od 70 °C, tokom 5 h.

## 3. Rezultati

Na Slici 1 prikazani su kritični uglovi detekcije  $\theta_{\rm C}$  (u odnosu na normalu na površinu detektora) dobijeni primenom prethodno navedenih V funkcija. Funkcija  $\theta_{C4}$ , dobijena na osnovu nove funkcije  $V_4$ , naglo opada za energije iznad 4 MeV pa već čestice sa energijama iznad 6 MeV ne zadovoljavaju postavljeni kriterijum vidljivosti čak ni pri ortogonalnom upadu na površinu detektora.

Slika 1. Kritični uglovi detekcije dobijeni korišćenjem TRACK VISION2.1 softvera i odgovarajućih V-funkcija ( $V_i$ , i = 1, 2, ..., 5); puna linija predstavlja funkciju koju su eksperimentalno dobili Calamosca i saradnici [9].



Funkcija  $\theta_{C4}$ :  $\theta_{C4}(E) = \sum_{i=1}^{5} a_i \cdot E^{b_i} \cdot e^{-c_i E}$ Parametri fitovanja su dati u Tabeli 1

| Tabela 1. | Parametri | fitovanja za | funkciju $\theta_{C4}$ |
|-----------|-----------|--------------|------------------------|
|           |           |              | J U4                   |

|   | 1        | 2       | 3         | 4      | 5        |
|---|----------|---------|-----------|--------|----------|
| а | 1088.744 | -0.1662 | 1268.9729 | 6.6735 | -0.5975  |
| b | 9.1507   | 3.5065  | 2.6523    | 7.5144 | -86.9132 |
| С | 4.8754   | 0.3041  | 3.1961    | 2.0088 | 317.998  |

Teorijski proračun za f,=0.5

Na Slici 2 su predstavljeni kalibracioni koeficijenti dobijeni pomoću programa CR39\_Sensitivity korišćenjem pet V funkcija. Za svaku V funkciju je prikazan opseg u zavisnosti od zapreminske frakcije kratkoživećeg radonovog potomka <sup>218</sup>Po ( $f_1$ ). Istraživanja su pokazala da je f<sub>1</sub> <0.5, pa se može zaključiti da funkcije  $V_1$  i  $V_5$  daju najbolje slaganje teorije i eksperimenta. Nova funkcija  $V_4$  daje rezultate koji su znatno niži od eksperimentalno dobijene vrednosti.

#### Literatura

[1] D. Nikezic, D. Kostic. Simulation of the track growth and determining the track parameters. Radiat. Meas. 28, 1997, 185–190.

[2] D. Nikezic, J.M. Stajic, K.N. Yu. Updates to TRACK\_TEST and TRACK\_VISION Computer Programs. Polymers 13, 2021, 560.

[3] D. Nikezic, K.N. Yu, J.M. Stajic. Computer program for the sensitivity calculation of a CR-39 detector in a diffusion chamber for radon measurements. Rev. Sci. Instrum. 85, 2014, 022102.

[4] P.G. Green, A.G. Ramli, A.R. Al-Najjar, F. Abu-Jarad, S.A. Durrani. A study of bulk etch rates and track-etch rates in CR-39. Nucl. Instrum. Methods 203, 1982, 551–559.

[5] C. Brun, M. Fromm, M. Jouffroy, P. Meyer, J.E. Groetz, F. Abel, et al. Intercomparative study of the detection characteristics of the CR-39 SSNTD for light ions: Present status of the Besancon—Dresden approaches. Radiat. Meas. 31, 1999, 89–98.

[6] K.N. Yu, F.M.F. Ng, D. Nikezic, Measuring depths of sub-micron tracks in a CR-39 detector from replicas using atomic force microscopy. Radiat. Meas. 40, 2005, 380–383.

[7] M.A. Al-Jubbori. V-function to investigate tracks of the alpha particle irradiated CR-39 detector. Radiat. Meas. 136, 2020, 106388.

[8] D. Hermsdorf. Evaluation of the sensitivity function V for registration of α-particles in PADC CR-39 solid state nuclear track detector material. Radiat. Meas. 44, 2009, 283–288.

[9] M. Calamosca, S. Penzo, G. Gualdrini. Experimental determination of CR-39counting efficiency to a particles to design the holder of a new radon gas dosemeter. Radiat. Meas. 36, 2003,217–219.

Slika 3. Kalibracioni koeficijent CR-39 detektora dobijen teorijski za različite oblike V funkcija (kružni simboli:  $f_1=0.5$ ; donje granice opsega:  $f_1=0$ ; gornje granice opsega:  $f_1=1$ ) i eksperimentalno dobijena vrednost (isprekidana crvena linija).



## 4. Zaključak

Na osnovu poređenja teorijskog i eksperimentalnog proračuna, funkcije  $V_1$  i  $V_5$  i dalje daju najbolje rezultate. Nova funkcija  $V_4$  teorijski predviđa vrednosti koje su niže od eksperimentalnih.

ZAHVALNICA: Ovaj rad je podržan od strane Ministarstva prosvete, nauke i tehnološkog razvoja (ugovori: 451-03-9/2021-14/200378 i 451-03-9/2021-14/200122).